Approaching the magnetic singularity

In many materials, electrical resistance and voltage change in the presence of a magnetic field, usually varying smoothly as the magnetic field rotates. This simple magnetic response underlies many applications including contactless current sensing, motion sensing, and data storage.
In a crystal, the way that the charge and spin of its electrons align and interact underlies these effects. Utilizing the nature of the alignment, called symmetry, is a key ingredient in designing a functional material for electronics and the emerging field of spin-based electronics (spintronics).
Recently a team of researchers from MIT, the French National Center for Scientific Research (CNRS) and École Normale Supérieure (ENS) de Lyon, University of California at Santa Barbara (UCSB), the Hong Kong University of Science and Technology (HKUST), and NIST Center for Neutron Research, led by Joseph G. Checkelsky, assistant professor of physics at MIT, has discovered a new type of magnetically driven electrical response in a crystal composed of cerium, aluminum, germanium, and silicon.
At temperatures below 5.6 kelvins (corresponding to -449.6 degrees Fahrenheit), these crystals show a sharp enhancement of electrical resistivity when the magnetic field is precisely aligned within an angle of 1 degree along the high symmetry direction of the crystal.